IN-VITRO AND IN-SILICO APPROACHES ON DIFFERENT AZOLE DERIVATIVES AS A POTENTIAL RHO GTPASE RHO 1 INHIBITOR ON ASPERGILLOSIS AFTER BLACK FUNGUS REPORTED IN COVID-19 PATIENTS.

Main Article Content

SINDHU TJ
ANU JAGAJITH
JESVY JOBY
ARATHI KN

Abstract

Objective: Aspergillosis, a serious fungal infection  is affecting the lungs of those Covid-19 patients who have high blood sugar level like in the case of black fungus. A novel series of azole analogues were designed with an effort to overcome the increasing antibiotic resistance. Rho GTPase Rho1is an essential enzyme of Aspergillus  fumigatus.  Azoles have an ability to inhibit the Rho GTPase Rho1enzyme.

Method: In this work we aimed to design and evaluate the azole antifungals and its derivatives. The ligand molecules were subjected to molecular docking studies with enzyme. Computational Autodock 4.2 tools will be employed in this study for docking of azole ligand molecules against Rho GTPase Rho1. (PDB code: 5ZVP). Molinspiration server was used for lead optimization.

Results and Conclusion:The molecular docking studies are supported to compare in-vitro antifungal activity by the use of binding energy of the docked ligand molecules. Further, the antifungal activity of azole compounds were assessed with zone of inhibition by agar disc diffusion method using fungal strain Aspergillus  fumigatus.

Downloads

Download data is not yet available.

Article Details

How to Cite
TJ, S., JAGAJITH, A., JOBY, J., & KN, A. (2021). IN-VITRO AND IN-SILICO APPROACHES ON DIFFERENT AZOLE DERIVATIVES AS A POTENTIAL RHO GTPASE RHO 1 INHIBITOR ON ASPERGILLOSIS AFTER BLACK FUNGUS REPORTED IN COVID-19 PATIENTS. Innovat International Journal Of Medical & Pharmaceutical Sciences, 6(5), 21–25. Retrieved from https://www.innovatpublisher.com/index.php/iijmps/article/view/158
Section
Original Article(s)

References

Hinson KFW, Moon AJ, Plummer NS. Broncho-pulmonary aspergillosis: a review and a report of eight new cases. Thorax. 1952;7(4):317-33. doi: 10.1136/thx.7.4.317, PMID 13015523.

Bodey GP, Vartivarian S. Aspergillosis; Eun J. Clin. Microbiol. Infect Dis. May 1989:413-37.

Rinaldi, M. G. . Invasive aspergillosis. Reviews of Infectious Diseases. 1983, ;5(6): 1061–-1077. doi: 10.1093/clinids/5.6.1061, PMID 6361959.

Raper KB, Fennell DI. The genus Aspergillus. Baltimore: Williams & Wilkins; 1965. p. 1-686.

Latgé J-P. Aspergillus fumigatus and Aspergillosis; American Society for Microbiology. Clin Microbiol Rev. April 1 1999;12(2):310-50. doi: 10.1128/CMR.12.2.310, PMID 10194462.

Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Segal BH, Steinbach WJ, Stevens DA, van Burik JA, Wingard JR, Patterson TF, Infectious Diseases Society of America. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis. 2008;46(3):327-60. doi: 10.1086/525258, PMID 18177225.

Herbrecht R, Denning DW, Patterson TF, Bennett JE, Greene RE, Oestmann JW, Kern WV, Marr KA, Ribaud P, Lortholary O, Sylvester R, Rubin RH, Wingard JR, Stark P, Durand C, Caillot D, Thiel E, Chandrasekar PH, Hodges MR, Schlamm HT, Troke PF, de Pauw B, Invasive Fungal Infections Group of the European Organisation for Research and Treatment of Cancer and the Global Aspergillus Study Group. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347(6):408-15. doi: 10.1056/NEJMoa020191, PMID 12167683.

Como JA, Dismukes WE. Oral azole drugs as systemic antifungal therapy. N Engl J Med. 1994;330(4):263-72. doi: 10.1056/NEJM199401273300407, PMID 8272088.

Johnson LB, Kauffman CA. Voriconazole: a new triazole antifungal agent. Clin Infect Dis. 2003;36(5):630-7. doi: 10.1086/367933, PMID 12594645.

Nagappan V, Deresinski S. Reviews of anti-infective agents: posaconazole: a broad-spectrum triazole antifungal agent. Clin Infect Dis. 2007;45(12):1610-7. doi: 10.1086/523576, PMID 18190324.

Willems L, van der Geest R, de Beule K. Itraconazole oral solution and intravenous formulations: a review of pharmacokinetics and pharmacodynamics. J Clin Pharm Ther. 2001;26(3):159-69. doi: 10.1046/j.1365-2710.2001.00338.x, PMID 11422598.

Hostetler JS, Hanson LH, Stevens DA. Effect of cyclodextrin on the pharmacology of antifungal oral azoles. Antimicrob AgentsChemother. 1992;36(2):477-80. doi: 10.1128/AAC.36.2.477, PMID 1605615.

Stevens DA. Itraconazole in cyclodextrin solution. Pharmacotherapy. 1999;19(5):603-11. doi: 10.1592/phco.19.8.603.31529, PMID 10331823.

Szente L, Szejtli J. Highly soluble cyclodextrin derivatives: chemistry, properties, and trends in development. Adv Drug Deliv Rev. 1999;36(1):17-28. doi: 10.1016/s0169-409x(98)00092-1, PMID 10837706.

Singh S, Malik BK, Sharma DK. Molecular drug targets and structure based drug design: A holistic approach. Bioinformation. 2006;1(8):314-20. doi: 10.6026/97320630001314, PMID 17597912.

Ashatoshkar. Principles of medicinal chemistry. 2ndnd edition;. p. 1-12.

Eddershaw PJ, Beresford AP, Bayliss MK. ADME/PK as part of a rational approach to drug discovery. Drug Discov Today. 2000;5(9):409-14. doi: 10.1016/s1359-6446(00)01540-3, PMID 10931658.

Drug design [cited Feb 15 2019]. Available from: http://www.thefullwiki.org/Drugdesign.

Latgé JP. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 1999;12(2):310-50. doi: 10.1128/CMR.12.2.310, PMID 10194462.

Heasman SJ, Ridley AJ. Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol. 2008;9(9):690-701. doi: 10.1038/nrm2476, PMID 18719708.

Hall A. Rho family GTPases. Biochem Soc Trans. 2012;40(6):1378-82. doi: 10.1042/BST20120103, PMID 23176484.

Ridley AJ, Hall A. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response togrowth factors. Cell. 1992;70(3):389-99. doi: 10.1016/0092-8674(92)90163-7, PMID 1643657.

Vistoli G, Pedretti A, Testa B. Assessing drug-likeness-what are we missing? Drug Discov Today. 2008;13(7-8):285-94. doi: 10.1016/j.drudis.2007.11.007, PMID 18405840.

Lipinski’s rule of five. Accessed on 15February 2019. Available from: http://en.wikipedia.org/wiki/Lipinski’s Rule of Five.

Drug likeness [cited Feb 15 2019]. Available from: http://en.wikipedia.org/wiki/Druglikeliness. Accessed on 15 February 2019.

Autodock. p. 4.2 [cited Sep 14 2018]. Available from: http://autodock.scripps.edu/downloads.

Download Python [cited Sep 14 2018]. Available from: http://www.python.org/download/.

Python [cited Sep 14 2018]. Available from: http://www.python.org/.

Cappuccino James and S. Natalie. Microbiology laboratory manual. 10th ed. p. 13-5.

Khabnadideh S, Rezaei Z, Ghasemi Y, Montazeri N, Najafabady. Antiinfective agents, antimicrobial activity of some new azole compounds. Vol. 10(1); 2012. p. 46.

Pelczar MJ, Krieg NR. Microbiology- Disc Plate method. 6th ed. p. 535-7.

Jain NK. Pharmaceutical Microbiolog, Revised and updated second edition. Delhi: Vallabh Prakashan Publication. p. 295.

Dichtl K, Helmschrott C, Dirr F, Wagener J. Deciphering cell wall integrity signalling in Aspergillus fumigatus: identification and functional characterization of cell wall stress sensors and relevant Rho GTPases. Mol Microbiol. 2012;83(3):506-19. doi: 10.1111/j.1365-2958.2011.07946.x, PMID 22220813.